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Generalization of Difference Formulas'

e In general, a difference approximation to the m*” derivative at

grid point j can be cast in terms of ¢+ p+ 1 neighboring points as
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where the a; are coefficients to be determined through the use of

e Forward, backward, skewed, or central point operators of any

order for any derivative.




Compact Difference Formulas'

e A generalization of Eq. 1 can include derivatives at neighboring
points, 1.e.,
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An example of such a formula written on terms of general

coefficients a, b, c, d, e is
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Here not only is the derivative at point j represented, but also
included are derivatives at points 7 — 1 and 7 + 1 which also must
be expanded using Taylor series about point j.




e Requires generalization of the Taylor series expansion
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e Derivative terms now have coeflicients which must be determined

using the Taylor table approach as outlined below.




Taylor Table for Compact Difference Formulas'
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Taylor Table for Compact Difference Formulas'

e Maximize the order of accuracy

e Set the the first five columns to zero producing the matrix

equation for the coefficients,
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e Having the solution |a,b, c,d, €] = %[—3, 0,3,1,1].




Under these conditions, the sixth column sums to
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A 4" order accurate method

The method can be expressed as
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Obviously, the implementation of such a method requires more

explanation.

Matrix forms of difference schemes will be useful.




